±UCL

Computationally efficient surrogate based multi-objective optimisation for PSA for Carbon capture

Joakim Beck¹ & <u>Eric S Fraga</u>² ¹Department of Statistical Science ²CPSE, Department of Chemical Engineering

University College London (UCL)

26 March 2015

Topic

- 2 Surrogate modelling
- 3 Case studies
- 4 Conclusion

Efficient carbon capture

- reduce efficiency loss due to carbon capture.
- combined materials and process design.
- evaluation based on experiments, detailed modelling and process simulation and optimisation.

EPSRC EP/G062129/1

Integrating carbon capture

- The project considered both preand post-combustion capture.
- This talk concentrates on post-combustion alone.

Pressure Swing Adsorption (PSA)

Four step cycle:

- FP: Feed pressurisation
 - F: Feed (adsorption)
- CnD: Countercurrent depressurisation
 - LR: Light reflux (desorption)

Modelling I

Component mass balances (axial dispersed plug flow model):

$$\begin{aligned} \frac{dc_i}{dt} &+ \frac{1 - \epsilon_b}{\epsilon_b} \frac{d\bar{Q}_i}{dt} + \frac{\partial(uc_i)}{\partial z} + \frac{\partial J_i}{\partial z} = 0\\ \frac{d\bar{Q}_i}{dt} &= \epsilon_p \frac{dc_i^m}{dt} + (1 - \epsilon_p) \frac{d\bar{q}_i}{dt} = k_i^p \frac{A_p}{V_p} (c_i - c_i^m) \end{aligned}$$

Energy balance for the adsorbate in the gas phase:

$$\epsilon_{b} \frac{d\hat{U}_{f}}{dt} = -(1-\epsilon_{b}) \frac{\partial\hat{U}_{p}}{\partial t} - \epsilon_{b} \frac{\partial(\hat{H}_{f}u)}{\partial z} - \frac{\partial J_{T}}{\partial z} - \sum_{i=1}^{N_{c}} \frac{\partial(J_{i}\hat{H}_{i})}{\partial z} - h_{w} \frac{A_{c}}{V_{c}} (T_{f} - T_{w})$$

UCL

Modelling II

Energy balance for the adsorbate in the solid phase:

$$\frac{\partial \hat{U}_{p}}{\partial t} = \epsilon_{p} \frac{d \hat{U}_{p,f}}{dt} + (1 - \epsilon_{p}) \frac{d \hat{U}_{p,s}}{dt} = h_{p} \frac{A_{p}}{V_{p}} (T_{f} - T_{p})$$

Energy balance in the bed wall:

$$\rho_w C_{\rho,w} \frac{\partial T_w}{\partial t} = -h_w \frac{A_c}{V_w} (T_w - T_f) - U\alpha_{wl} (T_w - T_\infty)$$

and so on.

As simulation must reach *cyclic steady state*, \Rightarrow computational effort is significant.

Behaviour of objective function

 \Rightarrow motivates use of surrogate modelling (response surface modelling, meta-modelling, ...).

G Fiandaca, ESF & S Brandani (2009), Engineering Optimization 41(9):833-854. Computationally efficient surrogate based multi-objective optimisation for PSA for Carbon capture

Topic

- 2 Surrogate modelling
- 3 Case studies

4 Conclusion

Surrogate model

- a fast approximation of model's response y(x) : ℝ^p → ℝ where X ⊂ ℝ^p is the space with p design variables.
- suitable for black box optimisation models as the surrogate model is non-intrusive.
- based on training data: a set of known design points.

Most surrogates have form

$$\hat{y}(\boldsymbol{x}) = \sum_{k=1}^{q} eta_k h_k(\boldsymbol{x}) + \epsilon(\boldsymbol{x})$$

with regressors $h_i(\cdot)$ and a residual random process, $\epsilon(\cdot)$.

Kriging

A statistical interpolating approach used for approximating deterministic models.

<u><u></u>[±]UCI</u>

Surrogate Based Optimisation I

Surrogate Based Optimisation II

Optimiser

We use evolutionary stochastic methods to cater for multi-modality of objective function.

Topic

The challenge

- 2 Surrogate modelling
- 3 Case studies

Conclusion

<u><u></u></u>

Case study 1: Dual Piston PSA

_

DP-PSA: Decision variables

	Variables	а	Ь	
t _c	Cycle time	1	20	S
Ть	Bed temperature	15	70	°C
V_{p1}	Volume of piston chamber 1	$0.5V_0$	$15V_0$	m ³
V_{p2}	Volume of piston chamber 2	$0.5V_0$	$15V_0$	m ³
ϕ_{p1}	Offset angle of piston 1	0	2π	radians
$\phi_{\it p2}$	Offset angle of piston 2	0	2π	radians

<u><u></u>UCI</u>

DP-PSA: Objective Function

Purity of CO_2 (%) in piston chamber 1 at CSS:

$$100 \times \frac{\int_{t_c} u y_{CO_2,p_1} dt}{\int_{t_c} u \sum_{j \in \{CO_2,N_2\}} y_{j,p_1} dt}$$

<u><u></u>UCI</u>

DP-PSA: Objective Function Evolution

J Beck, D Friedrich, S Brandani, S Guillas & ESF (2012), Proc. ESCAPE-22.

UCI

DP-PSA: Design Evolution

[±]UCL

DP-PSA: Diversity

Case study 2: 6 step, 2 bed PSA

- 6 design variables.
- 3 objective functions: recovery, purity and power (but will illustrate 2).
- computational effort large: 30-60 minutes per objective function evaluation.

Visualisation I

<u><u></u>⁺UCL</u>

Visualisation II

A Žilinskas, ESF, J Beck & A Varoneckas (2015), J of Chemometrics 142:151-158.

Computationally efficient surrogate based multi-objective optimisation for PSA for Carbon capture

28 / 31

Topic

The challenge

- 2 Surrogate modelling
- **3** Case studies

Summary

- surrogate modelling effective in optimal design.
- suitable for multi-objective optimisation.
- now considering discrete functions and uncertainty.

Acknowledgements

EPSRC EP/G062129/1, Prof Stefano Brandani & Dr Daniel Friedrich (U of Edinburgh).

http://www.ucl.ac.uk/~ucecesf/