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Integrating carbon capture

The project

considered both pre-

and post-combustion

capture.

This talk

concentrates on

post-combustion

alone.
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Pressure Swing Adsorption (PSA)
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FP: Feed pressurisation

F: Feed (adsorption)

CnD: Countercurrent

depressurisation

LR: Light re�ux

(desorption)
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Modelling I

Component mass balances (axial dispersed plug �ow model):

dc i

dt
+

1− εb
εb

dQ̄i

dt
+
∂(uci)

∂z
+
∂Ji
∂z

= 0

dQ̄i

dt
= εp

dcmi
dt

+ (1− εp)
dq̄i

dt
= k

p
i

Ap

Vp

(ci − cmi )

Energy balance for the adsorbate in the gas phase:

εb
dÛf
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Modelling II

Energy balance for the adsorbate in the solid phase:

∂Ûp

∂t
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Energy balance in the bed wall:

ρwCp,w
∂Tw
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= −hw
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Vw
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and so on.

As simulation must reach cyclic steady state,
⇒ computational e�ort is signi�cant.
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Behaviour of objective function
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Along a line in design space

⇒ motivates use of surrogate modelling (response surface

modelling, meta-modelling, . . . ).

G Fiandaca, ESF & S Brandani (2009), Engineering Optimization 41(9):833-854.
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Surrogate model

a fast approximation of model's response y(x) : Rp → R
where X ⊂ Rp is the space with p design variables.

suitable for black box optimisation models as the surrogate

model is non-intrusive.

based on training data: a set of known design points.

Most surrogates have form

ŷ(x) =

q∑
k=1

βkhk(x) + ε(x)

with regressors hi(·) and a residual random process, ε(·).
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Kriging

A statistical interpolating approach used for approximating
deterministic models.
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Surrogate Based Optimisation I
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Surrogate Based Optimisation II
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Optimiser
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We use evolutionary stochastic methods to cater for
multi-modality of objective function.
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Case study 1: Dual Piston PSA
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DP-PSA: Decision variables

Variables a b

tc Cycle time 1 20 s
Tb Bed temperature 15 70 ◦C
Vp1 Volume of piston chamber 1 0.5V0 15V0 m3

Vp2 Volume of piston chamber 2 0.5V0 15V0 m3

φp1 O�set angle of piston 1 0 2π radians
φp2 O�set angle of piston 2 0 2π radians
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DP-PSA: Objective Function

Purity of CO2 (%) in piston chamber 1 at CSS:

100×

r
tc
uyCO2,p1dtr

tc
u

∑
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yj ,p1dt
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DP-PSA: Objective Function

Evolution
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DP-PSA: Design Evolution
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DP-PSA: Diversity
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Case study 2: 6 step, 2 bed PSA

Bed 
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6 design variables.

3 objective functions: recovery,

purity and power (but will illustrate

2).

computational e�ort large: 30-60

minutes per objective function

evaluation.
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Pareto front: n = 64
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Pareto front: n = 96
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Pareto front: n = 176
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Pareto front: n = 256
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Visualisation I
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Visualisation II
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A �Zilinskas, ESF, J Beck & A Varoneckas (2015), J of Chemometrics 142:151-158.
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Summary
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Evaluation

surrogate modelling e�ective in

optimal design.

suitable for multi-objective

optimisation.

now considering discrete functions

and uncertainty.
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